University Of Limerick

Semiconductors 1


Iowa State Course Substitution

Semiconductor Materials and Devices

E E 332

Course Info

International Credits: 6.0
Converted Credits: 3.5
Country: Ireland
Language: English
Course Description:
Semiconductor technology: overview of advances in integrated circuits, the road map, Moore¿s law. General nature of semiconductor materials: elemental materials and their uses in research and industry, compound materials and alloys and their applications, influence of purity on electrical properties of semiconductors. Structure of semiconductors: amorphous, crystalline and polycrystalline solids, unit cells, lattice types, body centred cubic, face centred cubic, the diamond lattice, Si and Ge, Miller indices. Electrical properties: contribution of mobility and free carrier density to resistivity, electrical properties of conductors, semiconductors and insulators. Semiconductors: pure semiconductors, important elements from group 3, group 4 and group 5 of the periodic table, valence electrons, covalent bonding, p-type semiconductors and n-type semiconductors, energy levels for p-type and n-type semiconductors, intrinsic energy level, intrinsic carrier density, thermal equilibrium, carrier lifetime. Doping of silicon: donors and acceptors, majority carriers and minority carriers, hot point probe, 4-point probe sheet resistance, carrier transport. Lithography: lithography processes (light sources, exposure systems, photoresist), aerial image, latent image, relief image, pattern definition, pattern transfer (etching, deposition, implantation etc.). Optical lithography techniques: optical resists, key resist parameters, positive and negative resist, DNQ system and deep UV system. Resist processing: priming, spinning, baking, exposing, developing, hard baking, stripping. Exposure: types of exposure (UV light to deep UV, X-rays, electrons, ions), method of exposure, development (positive, negative). Printing: Fresnel system, contact and proximity printing, Fraunhofer system, projection printing, advantages and disadvantages. Advanced lithography]: focused ion beam, electron beam, etc. Thermal oxidation of silicon: the oxidation process, type of furnaces, wet oxidation,dry oxidation, factors influencing oxidation rates, silica film thickness measurements. Thin film deposition: evaporation, sputtering, chemical vapour deposition. Diffusion: diffusion processes, constant source diffusion, limited source diffusion, solid solubility limits. Epitaxial silicon deposition: LPCVD amorphous silicon, importance of epitaxy. Ion implantation: implantation technology, channelling, lattice damage and annealing.


Evaluation Date:
September 20, 2016
Vikram Dalal